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Abstract 
 

 A class of flux compression generators (FCGs) is based 

on the compression of the cross-sectional area of a coaxial 

geometry where the current flows along the outer 

conductor and returns through the inner conductor. This 

compression causes an increase in current since  magnetic 

flux must be conserved. Kiuttu’s inductive electric field 

formulation is a powerful tool for the conceptual design of 

coaxial FCGs 
1
. The usefulness of this formulation is 

demonstrated in this paper for a simplified geometry 

using a finite element partial differential equation solver, 

FlexPDE 
TM

,  for calculation of the inductive electric 

field. A time varying applied current or a moving surface 

creates the non-conservative electric field. Losses due to 

diffusion of magnetic flux into conducting surfaces can 

also be accounted for and modeled in this setting. This 

analytical-computational approach serves as an important 

step in validating  the MHD portion of the complex multi-

physics parallel LLNL code, ALE3D. The non-intuitive 

boundary conditions involved in solving the otherwise 

straightforward partial differential equations are described 

in detail and illustrated in a simple model. The physical 

parameters used in the simulations are not based on a 

specific design. 

 

 

I.  INTRODUCTION 
 

In Kiuttu’s formulation
1
, inductive electric field in 

pulsed coaxial devices where /(2 )
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2

2

r ˆ( )     
2

F
c

IB

t r
 




  





             (1) 

where electric vector potential F  is defined such that,    
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with a “Coulomb-type” gauge condition for F  

  0F                 (3) 

Note that when viewed in cylindrical coordinates, F  has 

only ̂  dependence, whereas electric field E  has no 

̂ dependence, 
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To address the boundary conditions for the PDE in 

Equation (1), it is best to view E  and F  in terms of their 

normal and parallel components. Equation (2) can be 

rewritten as, 
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From Equation (5), it follows that; 
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Equation (6a) and Equation (6b)  establish the boundary 

conditon for the problem. Equation (1) is then solved with 

a finite element PDE solver such as FlexPDE
2
 or 

COMSOL
3
 with the preceeding boundary conditions. 

In above equations, r is  the relative permittivity in sub- 

regions and is assumed to be uniform,  = ro  and c is the 

speed of light. I  is the rate of change of current and r is 

the radial distance from the center-line in an azimuthally 

symmetric geometry. Notations || and  refer to parallel 

and perpendicular component of the vector.  

 

II.  BOUNDARY CONDITIONS 
 

The correct treatment of boundary conditions as defined 

in Equation (6) is the most challenging part of solving 

Equation (1). To borrow terms from the FlexPDE manual, 

the boundary conditions for this PDE are either Natural or 

Value. Equation (6a) is of Natural form and Equation (6b) 

is of Value form. As will be shown, a moving boundary 

or/and resistive boundary constitutes a Natural boundary 

condition. On the other hand, Value(F) is a Dirichlet 

boundary that is applied only once throughout the 

problem to find a converged solution. 

 

 

 

 

 

 

 

 

Figure 1: A moving conducting boundary in a seed 

magnetic field generates an emf.  

 



A. Natural(F) 

 There are two types of Natural boundary conditions; 1) 

a moving boundary or/and 2) a resistive boundary. Both 

types of BCs can co-exist on the same boundary.  

  

1) Case of a Moving Boundary 

 In Figure 1, the movement of the left-boundary in +z  in 

the seed magnetic field  B


 generates an emf.   

One can write, 
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where B= B is the background magnetic field, o is the 

permeability of free space, n  is the unit vector normal to 

the moving edge, ri is the inner radius of the moving edge, 

ro is the outer radius of the moving edge. I is the current, 

vz is the wall velocity, and L  is the change in inductance. 

From Equation (5 ),  
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Note also that a moving wall, induces a change in the seed 

magnetic field, this in turn invokes the Faraday Law, 
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where L is vacuum inductance of the coax defined as,  
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Note that the algebraic sum of Equation (7) and Equation 

(9) yields the lossless generator equation: 
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2) Case of a Resistive Boundary 

   A resistive boundary is another form of the Natural 

boundary condition. In this case, the induced emf is 

generated from diffusion of magnetic field into the 

conductor, i.e., the IR loss, 
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In these expressions,  is the resistivity,  is the 

magnetic skin depth and R is the resistance. As a special 

case, for perfectly electric conductors i.e., PEC, 

( ) 0Natural F   

 

B. Value(F) 

 A region on the boundary where there is no E


 

constitutes a Value(F) boundary condition. Consider 

Equation (1), for a given  and I , the solution of the PDE 

places the upper limit of the value on the right-hand side 

of the equation for numerical precision, 
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To simplify,  let . 0Const   

 

    ( ) 0Value F                                                            (16) 

Again, this boundary condition  is to be applied to region 

where 0E

 . To obtain a converged solution the 

Value(F) boundary condition is applied only once to a 

boundary or portion of it. The choice in location may not 

be obvious at first – see Examples. 

 

 

III. EXAMPLES 
 

   The usefulness of this technique is best illustrated in the 

following examples. For brevity, Natural(F) is written as 

N(F) and Value(F) as V(F) from this point forward and 

throughout this paper  /(2 ).
o

B B I r


    

 

A. Example 1: Parallel Field Drive and PEC Walls 

 We start with a coaxial geometry (ro = 3.5 cm, ri = 2.5 

cm and l = 10.0 cm),  =1. All walls are made of PEC and 

a centrally placed 45
o
 insulator (=5) in the channel. The 

insulaor is 3.0 cm away from the left side-wall of the 

channel as shown in Figure 2. The vacuum inductance of 

this geometry, using Equation (10), is calculated to be 

6.2729 nH. If we were to inject a varying in time current 

I  across nodes 1 and 2, then the emf induced across the 

two nodes will be IL  which is realized by setting the 

V(F)=0 constraint on the left-hand side boundary.  

 

 

 

 

 

 

 

 

 

 

Figure 2. A coaxial geometry with parallel field drive and 

PEC walls; example 1. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Layout of a) electric vector potential F,         

(b) Electric field streamlines E and (c) |E| in Example 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Drive E and emf in Example 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Monitoring E and Voltage across the insulator 

in Example 1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. A coaxial geometry with a moving boundary 

and PEC walls; example 2. 

 

   Since the entire channel boundaries are made of PEC, 

the boundary condition on the remaining walls take on the 

N(F) =0 form. In this simple example, there is no 

background magnetic field. Assuming  I  = -0.1 A/s, then,  
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Figure 3, 4 and 5 shows FlexPDE results for this case. 

The electric field stresses seen by the insulator and the 

voltage that develops across the insulator is of great 

importance in an actual design. In this made-up problem,  

we monitor the electric field and voltage across nodes 3 

and 4 for diagnostics, 
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B. Example 2: Moving Boundary and PEC Walls 

 In this example, we start with the same geometry as in 

example 1 and add a background B field by driving a 

circulating current -1.0 Amp clockwise - see Figure 6. We 

then compress this field by forcing the left edge to move 

at a rate of 1.0 cm/sec in the +z direction, the moving 

boundary creates an I (-0.1 A/s) that satisfies the 

generator equation, i.e., Equation (11). The instantaneous 

change in inductance is, 
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The boundary condition on the left boundary is defined 

by,  
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In this case, the right hand boundary is actually a shorted 

boundary but is treated as an open boundary with no 

power flowing through it since  =0.E


Note the direction 

of  I and I are negative. The emf on the left boundary, 

between nodes 1 and 2 is, 
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The emf on the insulator edge, between nodes 3 and 4 is, 
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Figure 7. A coaxial geometry with resistive walls; 

example 3 

 

C. Example 3. Resistive Walls 

 We start with the same geometry as in example 1 and 

add a background B field by driving a circulating current -

1.0 amp,  see Figure 7. We then allow for all the walls to  

be resistive. There is no moving wall in this case and the 

the generator equation takes on the form, 

    0LI IR       (23) 

0.6729 nVLI  as before but R has to be 0.6729 nOhms 

in order to satisfy Equation (23). But R is distributed 

among all walls – with the exception of a small region at 

the top right-hand side corner where resistance is tapered 

and V(F) = 0 is set. This position is chosen since 

0E

 in that proximity of the channel – see Figure 3.  

We also need to choose a value of  to satisfy Equation 

(14). The value of  , in this example is  the same for all 

the boundaries. In FlexPDE input deck this value is 

adjusted to result in R = 0.6729 nOhms for the entire 

channel, using 
8

1.7 10
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  Ohm-m for  copper, 
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and from Equation (13), 
-4

= 2.955 10 m.  Therefore, 

the Natural boundary condition for each resistive 

boundary takes on the form, 
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Example 4. Moving Boundary and Resistive Walls 

 This example is a culmination of the previous 3 

examples where there is a background magnetic field that 

is compressed by a moving resistive boundary and is also 

instantaneously diffused in the neighboring resistive walls 

– see Figure 8. This time around, the generator equation 

has to be satisfied in its full form, 
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The boundary condition for the left moving boundary now 

has an added resistive component, 

   1( )
z

I
N F Bv

r





   

         
20 23

1.768 10 7.155 10

r r

 

 
 

                          (27) 

   

 

 

 

 

 

 

 

Figure 8. A coaxial geometry with moving resistive 

boundary and resistive walls; example 4. 

 

    At first glance, the moving wall component of Equation 

(27) looks to be the more dominant component but the 

resistive term spans over all boundaries.  

In this case, the drive voltage is higher (1.96 times) in 

magnitude than in example 2 to compensate for the 

resistive losses in the generator 
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Consequently the voltage across nodes 3 and 4 will be 

higher (1.92 times) as well – not quite a linear change, 
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IV. SUMMARY 
 

 Kiuttu’s method for calculation of inductive electric 

field using electric vector potential was implemented 

successfully to study magnetic flux compression in a 

simple coaxial configuration. FlexPDE and COMSOL 

were used in setting up four relevant examples. The more 

intricate use of Natural and Value boundary conditions 

was discussed and demonstrated in these examples. The 

details of setting up boundary conditions on PEC, 

resistive and moving boundaries were also explored in 

these examples.  This formulation is a powerful, 

inexpensive and quick tool in design phase of  coaxial 

generators. It can also serve as a validation tool for the 

more sophisticated full-wave EM codes such as 

COMSOL and hydro-MHD codes, such as LLNL’ s 

ALE3D code. The method does have limitations primarily 

due to the quasi-static treatment used in the formulation 

but provides a first comprehensive approach in 

understanding flux compression generator physics.  
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